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Numerical calculations of critical densities for lines and 
planes. 

P C Robinson 
Theoretical Physics Division, AERE Harwell, 0x1 1 O R A ,  UK 

Received 13 April 1984 

Abstract. Critical percolation densities have been calculated numerically for large systems 
of lines in two dimensions and planes in three dimensions. Results for lines of varying 
length have been successfully predicted from the constant length case. In special cases 
very large systems of up to a million lines have been studied. By calculating critical densities 
for a range of system sizes and using a finite-size scaling argument, a prediction of the 
infinite critical density is made. For the two-dimensional system with fixed length 
orthogonal lines this corresponds to 3.1 1 intersections per line. For the three-dimensional 
system of fixed size orthogonal planes, the prediction is 2.00 intersections per plane. 

1. Introduction 

The critical density for percolation in some systems of line segments in two dimensions 
was calculated numerically and reported by the author (Robinson 1983). We shall 
subsequently refer to this as paper I. Some results have also been obtained by Balberg 
and Binenbaum (1983). Both studies used small systems of around 1000 lines. The 
computer program used in I has now been improved and implemented on the CRAY-1 S 
computer. This has enabled much larger systems to be used. Three-dimensional systems 
of square planes have also been looked at. For special cases we have been able to use 
systems with over 250 000 lines or 200 000 planes. By looking at the way the calculated 
critical density varies with increasing system size and using a finite-size scaling argument 
we can predict the infinite results with some confidence. 

2. Numerical calculation 

For numerical calculation of critical densities in two dimensions we use the following 
technique. We take a square region and generate lines randomly in and around it. 
The lines are uniformly distributed in space and have the specified length and orienta- 
tion distributions. Each new line can 

(i)  form a new cluster (no intersections) 
(ii) extend an existing cluster 
(iii) unite two or more existing clusters. 

After each line we check modified clusters to see if they satisfy the percolation criterion 
(generally this requires the cluster to connect all four sides of the region). Once the 
criterion is satisfied line generation is stopped and the critical density recorded. 
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The most time consuming part of the calculation is finding which lines intersect. 
We have developed an algorithm which does this very quickly and so allows large 
systems to be used. The basic technique is to cover the region with a square grid, and 
to maintain a list of lines which pass through each grid block. Only lines which pass 
through a common grid block can possibly intersect. The block size can be chosen to 
optimise the algorithm, we have found that having two or three lines per block gives 
the best results. 

In three dimensions this can be extended in the obvious way to deal with planes. 
In order to deal with very large systems further improvements in the algorithm 

were necessary. These were possible in the special case of fixed size orthogonal systems, 
both in two and three dimensions. In these cases we can make two improvements. 
The block size can be chosen so that the lines are exactly two blocks long, then the 
blocks through which a line passes can be found very quickly. Also all intersections 
involve one line in each direction, so by keeping separate lists for the two directions 
the number of checks to be made can be halved. With all these improvements the 
program can find f million intersections per second. The restriction on system size is 
the memory capacity of the computer. 

3. Results of large runs for general cases 

3.1. Case I 

In this case the lines are all of fixed length two units, with orientations distributed 
uniformly in the interval (-a, a), for various a. In each case 50 realisations were 
used. The region used was 80 units square so there were over 9000 lines in each 
realisation. Table 1 gives the results, the final column being from the theoretical 
relationship derived in I. 

Table 1. Results for case I, uniform distribution of orientations. 

2 - (2a -sin 2 a )  (1)  Density p Intersections I - 
l2 Average Std dev. Average Std dev. ( P )  a2 

90" 
80" 
70" 
60" 
50" 
40" 
30" 
20" 

1.434 
1.452 
1.498 
1.612 
1.795 
2.126 
2.728 
4.002 

0.0624 
0.0509 
0.04 10 
0.0618 
0.0767 
0.0835 
0.1301 
0.1495 

3.650 
3.650 
3.615 
3.606 
3.582 
3.590 
3.607 
3.639 

0. I568 
0.1331 
0.1091 
0.1433 
0. I559 
0.1481 
0.1700 
0.1417 

2.545 
2.514 
2.413 
2.237 
1.996 
1.689 
1.322 
0.909 

2.546 
2.514 
2.413 
2.240 
1.997 
1.688 
1.322 
0.908 

It can be seen that the average density and average number of intersections are 
related as predicted and that the average number of intersections at percolation is 
decreasing slightly as a decreases. It should be remembered that more lines are present 
in the fixed size region for smaller a and so the finite-size effect: account for some of 
this decrease. For the smallest a values the number of intersections increases again. 
We will see in the next example that this occurs even when we know that it must be 
constant. It must therefore be due to the finite size region, and in particular the aspect 
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ratio of this region as compared to the spread of angles. The region is effectively much 
wider at small cy and so the calculated percolation density is increased. 

3.2. Case I I  

The second example was for the case with a fixed length of 2 units and orientations 
at * c y  from the horizontal. As Balberg and Binenbaum (1983) have pointed out in 
this case the number of intersections is independent of a. The results presented in 
table 2 are for 50 realisations with over 10 000 lines in each case. The final column is 
the theoretical relationship derived in I. 

Table 2. Results for case 11, bimodal distribution of orientations. 

(1)  Density p Intersections I -- 
a Average Std dev. Average Std dev. ( P )  2 sin2a 

45" 1.587 0.0565 3.171 0.1131 1.998 2.000 
40" 1.616 0.0605 3.175 0.1149 1.965 1.970 
3 5" 1.685 0.0569 3.161 0.1052 1.876 1.879 
30" 1.835 0.0685 3.178 0.1 160 1.732 1.732 
20" 2.526 0.0867 3.248 0.1134 1.286 1.286 

Again the relationship between the average number of intersections and the density 
is as predicted. I ,  is constant, as predicted, except for the smallest angle. This is the 
same as for the previous example, presumably being due to the effective width increase 
for small cy. 

3.3. Case I I l  

In this case we look at the way variability in line lengths affects the critical density. 
The lines are oriented in uniformly random directions and their lengths are uniformly 
distributed in the interval (2( 1 - e), 2( 1 + e ) )  for a range of 8 between 0 and 1. The 
predicted behaviour derived in I was that density would be proportional to ( 1  ++e2)-'. 
The ratio between intersections and density is predicted to be a constant with value 
81 T = 2.546. 

The average number of intersections over the density is consistently close to the 
theoretical value. The predicted change in critical density is close to the calculated 

Table 3. Results for case 111, uniform distribution of line lengths. 

~~ ~ _ _ _  

(1)  Density p Intersections I - 
8 Average Std dev. Average Std dev. ( P )  p( i  +fez) 

0.0 1.434 0.0624 3.650 0.1568 2.545 I .434 
0.2 1.428 0.0532 3.640 0.1325 2.549 1.447 
0.4 1.370 0.0614 3.493 0.1568 2.550 1.443 
0.6 1.301 0.0469 3.320 0.1 143 2.552 1.457 
0.8 1.207 0.0523 3.077 0.1318 2.549 1.464 
1 .o 1.095 0.0304 2.788 0.0952 2.546 1.460 
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value, giving an error of around 2%. For the large values of f3 there are less lines 
generated so the finite size-effects will push up the calculated density and explain some 
of the discrepancy. 

3.4. Case IV 

In this case we take a different line length variation. This time the lines have lengths 
2 or 21 with equal probability. 1 is taken between 0 and 1.2. In each case 50 realisa- 
tions were done, The results are presented in table 4. The theoretical prediction 
is that p(  1 + 1*)/2 is constant, and that the ratio between intersections and density is 
(2/ T ) (  1 + 1 ) ' .  These values are given in the table. 

Table 4. Results for case IV, bimodal distribution of line lengths. 

( l + P )  2 
/ Average Std dev. Average Std dev. ( P )  T 

p y  - (1+/ )2  Density p Intersections I ( 1 )  

0.0 2.868 0.1248 1.825 0.0748 0.636 1.434 0.637 
0.2 2.810 0.0945 2.577 0.0958 0.917 1.461 0.9 17 
0.4 2.529 0.0879 3.158 0.1 102 1.248 1.467 1.248 
0.6 2.128 0.0885 3.470 0. I488 1.630 1.447 1.630 
0.8 1.748 0.0675 3.604 0.1397 2.063 1.433 2.063 
1 .o 1.434 0.0624 3.650 0.1568 2.546 1.434 2.546 
1.2 1.178 0.0463 3.633 0.1438 3.081 1.437 3.081 

The 1 = 0 result here was not actually calculated separately but was deduced from 
the 1 = 1 case. The theoretical result again seems to work well in these cases. The least 
good results are for 1 = 0.2 and 1 = 0.4 although even these are only 2% in error. 

3.5. Case V 

This is a three-dimensional case. We took unit squares with uniformly distributed 
orientations in a region 20 by 20 by 20, so that there were around 10 000 squares for 
each realisation. The average over 50 realisations gave an average critical density of 
1.231 planes per unit volume with an average of 2.461 intersections per plane. A ratio 
of 2.0 between these figures is predicted from geometrical considerations. 

3.6. Summary of results 

These results have shown that the relationship between intersection number and density 
is exactly as predicted, confirming that the program is finding all the intersections. 
For cases with varying line length the average intersections per line is not constant. 
If a weighted average is taken with the weight being the line length this is almost 
constant and so the critical density can be predicted. 

4. Region size effects 

4.1. Finite-size scaling 

In numerical calculations only finite systems can be considered. If we wish to find 
the critical density for infinite systems we must extrapolate from the finite-size results. 
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In this section we deduce the form of the critical density against region size curve 
from finite-size scaling arguments (Fisher 197 1 ) .  

Let R be the region size, C be the correlation length (which diverges at the transition) 
and p be the density which has critical value pc in the infinite case. Then C is a 
function of p and R. For p near pc and infinite R the correlation length has the form 

where v is the correlation length exponent. This is known to be $ for two-dimensional 
lattices (Essam 1980). In a finite system criticality is reached when R / C ( p ,  CO) is some 
constant, i.e. when R ( p  -p , ) ”  is constant. SO 

( p - p c ) c c  R - ” ” .  

This gives a relationship 

p,( R )  = p,(m) + u R - ~ ’ ~  

if the lattice value for v is assumed. In three dimensions the argument is the same 
but v = $. 

4.2. Results for the two-dimensional case 

The case considered was for two orthogonal line sets oriented parallel to the sides of 
the region. In all cases the lines were of length 2 units, the region size ranged from 
10 units to 400 units. For each region size at least 100 realisations were done, the 
actual number done in each case is given in table 5 .  The number of lines in the table 
refers to the number generated in an extended area around the region, 1 unit larger 

Table 5. Results of region size variation runs in two dimensions. 

Time 
Time per run 

Box Number Number of lines Density per run per line 
size of runs Average Std dev. Average Std dev. ( S I  (PSI 

10 400 233 33.9 1.616 0.2355 0.0053 22.77 
20 400 775 69.5 1.600 0.1436 0.0176 22.71 
30 400 1640 119.9 1.602 0.1 171 0.038 1 23.23 
40 400 2799 168.9 1.587 0.0958 0.0658 23.5 1 
50 500 4285 208.3 1.585 0.0770 0.101 23.57 
60 100 6102 284.1 1.587 0.0739 0.144 23.60 
70 100 8179 326.5 1.578 0.0630 0.194 23.72 
80 IO0 I O  627 418.0 1.580 0.0622 0.254 23.90 
90 IO0 I3 422 346.7 1.588 0.04 10 0.319 23.77 

100 200 16 369 467.8 1.573 0.0450 0.39 1 23.87 
110 100 19 807 609.6 1.579 0.0486 0.477 24.08 
120 100 23 456 548.5 1.576 0.0369 0.563 24.00 
130 100 27 326 668.7 1.568 0.0384 0.654 23.93 
140 100 31 544 75 1.2 1.564 0.0373 0.754 23.90 
150 100 36 216 834.3 1.568 0.0361 0.877 24.17 
200 200 63896 1050.5 1.566 0.0257 1.559 24.37 
250 100 99468 1489.1 1.566 0.0235 2.414 24.27 
300 200 I42 310 2010.0 1.560 0.0220 4.480 31.42 
400 200 252 212 2854.2 1.561 0.0177 7.952 31.51 



2828 P C Robinson 

1 158 

1 

10 50 100 200 400 1000 10000 
Box size 

Figure 1. Critical density against box size for orthogonal lines of length 2 units. The full 
circles show the average of the two criteria and the full curve shows the finite-size scaling 
fit. 

in each direction. This area was used since lines centred within it could enter the 
percolation region. The time per realisation is given and the time per realisation divided 
by the average number of lines. This shows that the algorithm used takes a time which 
increases only linearly with the number of lines. The sudden increase for the largest 
two region sizes is due to a change in algorithm to reduce the amount of computer 
space used so that the code would fit into the CRAY-IS at Harwell. 

The best least squares fit to the results gives p, (co)  = 1.556 with a = 0.505. This is 
shown on figure 1 with all the results, including some results for runs where the 
percolation criterion was relaxed to count any cluster connecting two opposite sides 
as percolating. These runs are summarised in table 6. 

It can be seen that the reduction in calculated critical density caused by changing 
the criterion is approximately equal to the standard deviation of the critical density. 
It is clear that the average between old and new densities is very nearly constant, 
suggesting that the two densities are tending towards this value at equal rates. The 
previous estimate, using the finite-size scaling with v = $ gave p c  = 1.556 which agrees 
very closely with this average value of 1.552. It seems plausible that the four-sided 
criterion overestimates critical densities and the two-sided criterion underestimates 
them. Taking all the results together there seems little doubt that the true critical 
density in this case is very close to 1.556, with 3.1 12 intersections per line. 

As the region size increases the standard deviation in the density at percolation 
goes down, it must be zero for infinite regions. In figure 2 we plot the logarithm of 

Table 6. Comparison of original percolation criterion and two-sided criterion. 

Box Four sides density Two sides density Change in Average 
size Average Std dev. Average Std dev. density density 

50 1.585 0.0770 1.520 0.0707 0.065 1.5525 
IO0 1.573 0.0450 1.529 0.0483 0.044 1.5510 
150 1.568 0.0361 1.530 0.033 1 0.038 1.5490 
200 1.566 0.0257 1.538 0.0306 0.02s 1.5520 
300 1.560 0.0220 1.539 0.02 15 0.021 I .5495 
400 1.561 0.0177 1.546 0.0151 0.015 1.5535 
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Figure 2. Standard deviation of critical density against box size of orthogonal lines of 
length 2 units. 

the standard deivation against the logarithm of the region size. The best fit line is 
shown. This gives the relationship a,( R )  = 1.3 R-0.722 which gives a very good fit. The 
exponent in this is very close to -: suggesting that the variability in the percolation 
density is proportional to the discrepancy between the finite and infinite critical 
densities, i.e. a,( R )  = 2.57(pC( R )  - p , ( a ) ) .  

4.3. Results in three dimensions 

In this case planes 1 unit by 1 unit were used in regions up to 50 by 50 by 50. The 
planes all had sides parallel to one of the coordinate axes and were parallel to a 
coordinate plane. Two percolation criteria were used, the first required a cluster 
connecting any pair of opposite faces of the cube, while the second required a cluster 
connecting all six faces. Table 7 presents the results. In each case 100 realisations 
were done, except for the largest cube for which 50 realisations were done. In all cases 
the time taken per plane per realisation was just less than 60 ~ s .  

Table 7. Comparison between original percolation criterion and two-faces criterion. 

Six faces Two faces 

Cube No of Density Density 
size fractures Average Std dev. Average Std dev. Difference Average 

I O  
15 
20 
25 
30 
35 
40 
45 
50 

2197 
6536 

14 593 
27 282 
45 921 
71 496 

105 398 
148 094 
201 906 

0.2064 
0.1995 
0.1970 
0.1940 
0.1927 
0.1916 
0.1912 
0.1902 
0.1903 

0.0131 
0.0087 
0.0057 
0.0054 
0.0039 
0.0034 
0.0030 
0.0024 
0.0022 

0.1842 
0.1830 
0.1855 
0.1845 
0.1853 
0.1856 
0.1857 
0.1854 
0.1856 

0.0134 
0.0091 
0.0069 
0.0063 
0.005 1 
0.0040 
0.0030 
0.0027 
0.0028 

0.0222 
0.0165 
0.01 15 
0.0095 
0.0074 
0.0060 
0.0055 
0.0048 
0.0047 

0. I953 
0.1913 
0.1913 
0.1893 
0.1890 
0.1886 
0.1885 
0.1878 
0.1879 
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Figure 3. Critical density against box size for orthogonal planes of size 1 unit by I unit. 
The solid line shows the finite-size scaling fit. 

The pattern of results is similar to the two-dimensional case, with the two definitions 
of percolation giving results that get closer as cube size increases. The scaling argument 
this time predicts a decrease with C-5’4, where C is the cube size. A least squares fit 
to the results gives a limiting value of 0.1874, in good agreement with the trend of the 
average results. This limit corresponds to an average number of intersections of almost 
exactly 2.0. Figure 3 shows all these results. 

5. Conclusions 

The predicted critical densities for lines in two dimensions have been improved. New 
results are given for planes in three dimensions. The infinite results for two particular 
systems, the orthogonal cases in two and three dimensions, have been predicted with 
the help of finite-size scaling arguments and some very large calculations. The two- 
dimensional case percolates when there are 3.11 intersections per line. In three 
dimensions 2.00 intersections per plane are required. 
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